

**ANTIOXIDANTS' USE IN THE TREATMENT OF MALE INFERTILITY,
SYSTEMIC REVIEW AND ANALYSIS OF EVIDENCE – BASED CLINICAL
GUIDELINES.**

Borus Purushothaman¹, Lokesh. K^{2*}, Harini.V³, Veerammal.I⁴, Suman Sharma⁵.

Dr. BORUS ANDRO LAB & RESEARCH CENTRE
Address- no 37, 5th Street, selvi nagar, kolathur, Chennai – 600099

Figure 1Author for correspondence

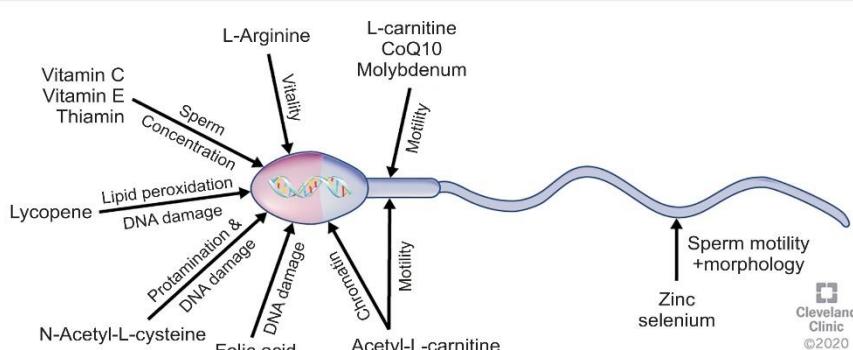
LOKESH. K, Pharm D
Director of Research

Dr. BORUS ANDRO LAB & RESEARCH CENTRE
Address- no 37, 5th Street, selvi nagar, kolathur, Chennai - 600099
E.mail- drlokeshkumar03@gmail.com
Ph.no- 9360320379

ABSTRACT

It's commonly acknowledged that antioxidants may play a key role in treating male infertility and that oxidative stress is a major factor in the pathophysiology of male infertility. This study's primary goals are to, 1) thoroughly examine the available data about the effectiveness of antioxidants in treating male infertility, and 2) provide evidence-based clinical recommendations for the application of antioxidants in treating male infertility. A manual screening of papers accessible on Scopus was conducted as part of a systematic review of the clinical evidence that was available. The type of antioxidant employed, the clinical conditions being studied, the assessment of semen parameters, and the results of reproduction were among the data that were extracted. For every included study, the compliance with the JADAD score, the Cambridge Quality Checklist, the Cochrane Risk of Bias for randomized controlled trials (RCTs), and CONSORT criteria was examined. Furthermore, in order to assess the present and potential importance of antioxidants in male infertility, we offered a Strength Weakness Opportunity Threat (SWOT) study. Antioxidant supplementation improves semen parameters, as the current systematic research on antioxidants and male infertility clearly demonstrates. Furthermore, it offers the indications for antioxidant treatment in some clinical situations, such as changed semen quality, varicocele, and unexplained and idiopathic male infertility.

Keywords, Antioxidants, Oxidative stress, Practice guideline, Semen analysis, Sperm maturation


INTRODUCTION

Infertility affects 15% of couples worldwide, with 2.5%–12% being exclusively caused by male factors. Geographical location affects the occurrence of male factor infertility, which can range from 20% to 70% [1]. Factors contributing to male infertility include varicocele, azoospermia, male hypogonadism, anti-sperm antibodies, and hereditary reasons. However, a significant fraction of cases remain idiopathic (30%–50%) or unexplained (15%) [2,3]. Low reproductive results in males are linked to environmental and lifestyle factors. Oxidative stress is a key mediator in male infertility, accounting for 30% to 80% of IMI cases [2,5]. There is growing interest in using antioxidants to mitigate oxidative stress from various male infertility etiologies and risk factors. Oral antioxidants are widely accessible, have excellent safety and bioavailability profiles, and are reasonably priced. As a result, there is an increasing trend of giving antioxidants to all male infertile patients, even in the absence of a thorough assessment or pertinent guidelines [7]. The effects of multiple antioxidants on male fertility have been extensively documented in the literature, and exogenous antioxidant administration has been the subject of decades' worth of research [8–11].

A Cochrane meta-analysis in 2011 and subsequent reviews [8,9,11] summarized the topic of male antioxidant treatment for assisted

reproductive technology (ART) in infertile males. The studies found that low-level evidence supports antioxidant therapy to enhance pregnancy and live birth rates, with no evidence for increased risk of miscarriage [8,9,11]. However, Majzoub and Agarwal (2018) [10] concluded that antioxidants improve male fertility, advanced sperm function, live birth rates, and semen parameters. Antioxidants like zinc, selenium, and folic acid are frequently used in clinical and scientific research. Systemic reviews of certain studies shows no clinical effect and serious negative effects either [16–20]. Examples of these antioxidants include carnitine, N-acetyl cysteine, vitamin A, vitamin C, vitamin E, and lycopene. (Fig. 1) [12–15]. However, the results of clinical studies vary widely due to the lack of placebo-controlled trials, varying treatment regimens, doses, and durations, and limited patient numbers. Many trials only assessed specialized factors, such as seminal volume, sperm concentration, and morphology, rather than assessing reproductive outcomes like live birth rate. Additionally, antioxidants were often administered at unproven dosages, ignoring the delicate balance of redox in the body [21]. High antioxidant dosages can lead to reductive stress, which can cause infertility [22–24]. High doses of vitamin E can have negative effects [20], while balanced antioxidant formulations have shown positive outcomes like decreased oxidative stress, improved sperm function, and successful

pregnancies [25,26]. This study aims to review recent research supporting antioxidant use in male infertility and propose updated clinical guidelines. The current rationale and inconsistent data call for a systematic review of current evidence to effectively treat male infertility.

MA

TERIALS AND METHODS

1. LITERATURE SEARCH STRATEGY

A comprehensive literature analysis was conducted to identify clinical trials examining the effect of antioxidant therapy on semen quality in male infertility. The PRISMA The Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria [27] were followed, and the Scopus database was selected due to its vast collection of over 70,000 indexed articles and over 1.4 billion cited references. The search was conducted on July 15, 2020, and the database was automatically filtered to include only original English articles. The articles were manually evaluated for eligibility based on title, keywords, and abstract. Three researchers (RF, KL and MKPS) independently conducted the screening, tracking the number of publications rejected. The number of full-text articles

fig no,1 certain anti oxidant substances that significantly impact the sperm function. CoQ, Co enzyme Q.

excluded listed in table 1 was noted after the evaluation. Information from eligible articles included the design of the clinical trial, antioxidant formulation, clinical condition, assessment of semen parameters and/or sperm function tests (such as sperm DNA fragmentation [SDF], oxidative stress markers, capacitation/acrosome reaction, and zona binding test), as well as reproductive outcomes (such as fertilization, implantation, pregnancy, miscarriage, and live birth rates).

2. EVALUATION OF STUDY QUALITY

The study assessed the quality of studies using the Cambridge Quality Checklist, Cochrane Risk of Bias, JADAD score, and CONSORT principles [31]. The studies were categorized into “low” and “high” quality categories, with uncontrolled studies considered low-quality Table 2 . A new grading system was developed, considering factors such as study design, sample size analysis, inclusion/exclusion criteria,

antioxidant regimen, treatment duration, oxidative stress markers evaluation, pregnancy and live birth rates, and recent clinical trials published between January 2019 and July 2020. The system assigns a maximum total score of 12 points and classifies articles into “low” and “high” quality categories. The Oxford Centre for Evidence-Based Medicine (2011) Levels of Evidence classification system classified the evidence into A, B, C, and D categories, based on which clinical recommendations were made.

A search using a keyword search approach led to 1,978 articles, with 97 papers included in Table 2. The study included individuals from both IMI and UMI, and included information about the population, treatment's reported effect on reproductive outcomes, quality assessment, and potential bias. Out of the 97 publications, 33 (34.0%) were blinded RCTs, 12 (12.4%) were unblinded RCTs, and 52 (53.6%) were uncontrolled clinical trials. Of the papers that examined different types of antioxidants, 44 (45.7%) used a single product, 22 (22.7%) tested a combination of multiple products at varying dosages, and 22 (22.7%) used registered antioxidant products. Statistical analysis showed that antioxidant treatment had positive effects on semen and sperm function parameters in 65.0% and 58.3% of high-quality studies, respectively. However, 85.7% and 89.6% of low-quality studies reported significant improvement in semen and sperm function parameters in infertile men after antioxidant supplementation. The underpowering of statistical analysis resulted

Table 1. Proposed inclusion and exclusion for article selection

Inclusion	Exclusion
Human participants	Animal and in vitro studies
Anti oxidants used as intervention individually or combined	Intervention not clearly reported as an anti oxidant
Open or controlled clinical trials	Abstracts only, conference abstracts, book chapters, case series, review articles
Sperm function measures (sperm DNA fragmentation, seminal oxidative stress markers, mitochondrial membrane integrity) and/ or semen parameters (sperm concentration, motility, morphology, vitality) reported following anti oxidant treatment	Non – English studies

tested a combination of multiple products at

3. STATISTICAL ANALYSIS

The study used MedCalc statistical software to analyze the effects of antioxidant treatment on sperm function and semen parameters like oxidative stress and SDF. The chi-square test was used to assess the relationship between the study's quality and results [25, 26, 32 -121] with p-values less than 0.05 considered statistically significant. A sample size calculation was performed for p<0.05.

RESULTS

varying dosages, and 22 (22.7%) used registered antioxidant products. Statistical analysis showed that antioxidant treatment had positive effects on semen and sperm function parameters in 65.0% and 58.3% of high-quality studies, respectively.

However, 85.7% and 89.6% of low-quality studies reported significant improvement in semen and sperm function parameters in infertile men after antioxidant supplementation. The underpowering of statistical analysis resulted

from the availability of a small number of studies reporting sperm functions and semen parameters. To achieve a statistical significance of $p<0.05$ for reproductive outcomes, a total of 95 and 292 studies reporting the results of semen parameters and sperm functions, respectively, were included.

However, these values were not significant due to the limited number of studies in the literature. Therefore, 33 low-quality and 202 high-quality studies are needed overall to achieve a statistical significance of $p<0.05$ for reproductive outcomes.

Table 2. articles investigating the impact of antioxidant treatment

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
INFERTILE MEN	1	KESSOPOULOU et al (1995) [19]	RCT blinded	α - Tocopheryl acetate (Ephynal, F. Hoffmann – La Roche Ltd) 300 mg/daily for 3 months	30 infertile men	No difference in semen parameters before and after treatment No difference in ROS levels Improved zona binding	2	3	7	Unclear risk of bias for random sequence generation, allocation concealment, selective reporting, other sources and blinding (outcome assessment)	20	4	1
	2	Keskes – ammar et al (2003) [33]	RCT unblinded	Vitamin E (400 mg) (ephynal 100 mg, 2 tablets) or selenium (225 μ g) for 3 months	54 infertile men	Improved sperm motility Reduced MDA levels	1	3	4	No risk of bias identified	12	3	0
	3	Menexo et al (2007) [20]	Uncontrolled (open label)	Vitamins C and E (400 mg each) β -carotene (18 mg), zinc (500 μ mol), selenium (1 μ mol) for 3 months	58 patients experiencing 2 previous failures of IVF or ICSI and DFI and chromatin decondensation >15%	Reduced SDF but higher sperm decondensation	0	3	3	N/A	N/A	N/A	0
	4	Da silva et al (2013) [17]	RCT blinded	Folic acid 5 mg/daily for 3 months	70 infertile men	No difference in semen parameters	3	3	7	No risk of bias identified	15	5	1
	5	Chattopadhyay et al (2016) [16]	Uncontrolled (open label)	L- carnitine, Acetyl – L- Carnitine, CoQ10, lycopene, Zinc, folic acid, vitamin B12, selenium for 6 months	115 infertile men	Increased sperm count, motility, TAC Reduced ROS levels	0	3	3	N/A	N/A	N/A	0
CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
	6	Stenqvist et al (2018) [39]	RCT blinded	Vitamin c (30 mg), vitamin E (5 mg), vitamin B12 (0.5 μ g) L – carnitine (750 mg), coenzyme Q10 (10 mg), folic acid (100 mg), zinc (5 mg), selenium (25 μ g)	77 infertile men with DFI >25%	Improved sperm concentration, no change in DNA damage	4	3	7	No risk of bias identified	19	5	1
	7	Salehi et al (2019) [42]	Uncontrolled (open label)	Vitamin E (50 mg) vitamin c (500 mg) and CoQ10 (100 mg) for 3 months	485 infertile men with DFI >27% by SCSA	Improved volume, sperm count, motility and normal morphology	2	3	3	N/A	N/A	N/A	N/A
	8	Hasoon (2019) [43]	Uncontrolled (open label)	L – arginine (1g) and CoQ10 (200 mg) for 8 months	24 infertile men	Improved volume, sperm count, motility and normal morphology	2	3	3	N/A	N/A	N/A	0
	9	Hadi et al (2020) [45]	Uncontrolled (open label)	L – carnitine 2g/daily for 3 months	598 infertile men	Improved sperm count, total motility and normal morphology In serum reduced FSH and LH level, increased testosterone and inhibin levels	2	3	3	N/A	N/A	N/A	0
	10	Schisterman et al (2020) [46]	RCT blinded	Folic acid 5 mg/daily and 30 mg zinc for 6 months	1,185 male partners of couple planning IVF for infertility treatment	No changes in semen parameters; improved SDF by comet assay : no significant differences in β -HCG-detected pregnancy, clinical intrauterine pregnancy, ectopic pregnancy, pregnancy with multiple fetuses, live birth rate	2	3	7	Unclear risk of bias for random sequence generation, allocation concealment, other sources, selective reporting and blinding	14	3	0

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
Varicocele	11	Comhaire et al (2000) [47]	Uncontrolled (open label)	β - carotene (30 mg) and α - tocopherol (180 mg)/daily.	7 idiopathic patients 11 varicocele patients History of cryptorchidism (n =2), patients with male accessory gland infection (n=7), immunological infertility (n =4), endocrine cause	Improved sperm concentration and acrosome reaction Reduced ROS levels and 8-OH – dG levels	2	3	3	N/A	N/A	N/A	N/A
	12	Festa et al (2014) [51]	Uncontrolled (open label)	CoQ10 100 mg/daily for 3 months	38 varicocele patients	Sperm concentration, progressive motility, and TAC No changes in semen parameters, SDF and Protamine damage assay	0	3	7	Unclear risk of bias for random sequence generation, allocation concealment and incomplete outcome data	14	2	0
	13	Cyrus et al (2015) [53]	RCT blinded	Vitamin C 250 mg/daily for 3 months	115 varicocele patients	Improved semen parameters	2	3	6	Unclear risk of bias for random sequence generation, allocation,concealment, selective reporting	18	5	0
	14	Gual – frau et al (2015) [54]	Uncontrolled (open label)	L – carnitine (1500 mg), vitamin C (60 mg), CoQ10 (20 mg), vitamin E (10 mg), vitamin B12 (200 µg), zinc (10 mg), selenium (50 µg) for 3 months	20 varicocele patients	Improved total sperm count and reduced SDF	2	3	3	N/A	N/A	N/A	0

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
	15	KIZILAY AND ALTAY (2019)	RCT unblinded	Vitamin c (180 mg), zinc (20 mg), folic acid (400 mg), selenium (100 mg), coenzyme Q 10 (40 mg), vitamin B12 (3 mg/daily for 6 months)	90 varicocele patients	Improved semen parameters Higher pregnancy rate	3	3	7	High risk bias for random sequence generation, allocation concealment, other sources, blinding, incomplete outcome data	19	2	0
	16	Ardestani Zadeh et al (2019) [57]	RCT unblinded	Folic acid (5 mg), selenium (200 µg) and vitamin E (400 IU)/ daily for 6 months	60 varicocele patients	Improved sperm count and motility	2	3	7	Unclear risk of bias for allocation concealment, other sources, high risk of bias for blinding	24	4	1
Abnormal semen quality	17	Suleiman et al (1996) [58]	RCT blinded	Vitamin E 300 mg/daily for 6 months	Oligoastheno (n=74), azoospermic (n=38), astheospermic (n=94), oligospermic (n=30) patients high viscosity (n=22), oligospermic with high viscosity (n=12) oligoasthenospermic with high viscosity (n=10)	Improved sperm motility Reduced MDA levels Higher pregnancy and live birth rates	4	3	7	Unclear risk of bias from random sequence generation, allocation concealment, other sources, blinding (participants and personnel outcomes assessment) incomplete outcome data	12	3	0

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JAN/ADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
18	Rolf et al (1999) [59]	RCT blinded	Vitamin C (1000 mg) and vitamin E (800 mg) daily for 56 days	31 asthemozoospermic patients	No changes in semen parameters	0	3	7	No risk of bias	21	5	1	
19	Balercia et al (2004) [62]	Uncontrolled (open label)	CoQ10 400 mg/daily for 56 months	22 asthenozoospermic patients	Improved progressive motility after treatment, which reduced after 6 months of wash out	4	3	4	N/A	N/A	N/A	0	
20	Nadjarzadeh et al (2011) [66]	RCT blinded	CoQ1 capsules 200 mg/daily	60 OAT patients	No change in semen parameters Reduced MDA and improved TAC	4	3	7	Unclear risk of bias for random sequence generation, allocation concealment, other sources and blinding. High risk of bias for incomplete outcome data				
21	Moslemi and tavabakhs (2011) [70]	Uncontrolled (open label)	Selenium (200 µg), vitamin E (400 units)/daily for 100 days	690 asthenoteraospermic patients	Improved semen parameters Higher spontaneous pregnancy No changes in semen parameters, SOD and catalase – like activity	1	3	3	N/A	N/A	N/A	0	
22	Safarinejad (2012) [72]	Uncontrolled (open label)	CoQ10 300 mg/daily for 12 months	287 OAT patients	Improved semen parameters No changes in pregnancy and miscarriage rates2	3	4	4	N/A	N/A	N/A	0	
23	Ajayi et al (2013) [74]	Uncontrolled (open label)	Vitamin C (200 mg), vitamin E (200 mg), folic acid (1 mg), zinc (50 mg), selenium (200 µg), n-acetyl-L-cysteine (100 mg), L-carnitine (600 mg)	Oligo – (n=20) astheno – (n=33) OAT (n=42) patients 65 healthy men	Imprvd semen parameters	3	3	3	N/A	N/A	N/A	0	

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JAN/ADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED				
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS								
24	Nadjarzadeh et al (2014) [75]	RCT blinded	CoQ10 20 mg/daily for 3 months	60 OAT patients	No changes in semen parameters Increased seminal level of CoQ10, catalase and SOD activity: reduced level f seminal plasma 8 isoprostane	4	3	7	Unclear risk for bias for random sequence generation, allocation concealment, selective reporting, other sources, blinding								
25	Rajani et al (2014) [76]	RCT blinded	Folic acid (5 mg)	83 OAT patients	No difference in semen parameters Increased sperm chromatin integrity	2	3	7	Unclear risk of bias for allocation concealment, other sources								
26	Kobori et al (2014) [77]	Uncontrolled (open label)	CoQ10 (120 mg), vitamin c (80 mg), vitamin E (40 mg)/daily for 6 months	169 OAT patients	Improved sperm concentration and motility 48 928.4% pregnancies achieved, of those 16 were spontaneous and 32 by using ART	0	3	3	N/A	N/A	N/A	0					
27	EL sheikh et al (2015) [84]	RCT unblinded	Vitamin E (400 mg/daily) Clomiphene citrate (25 mg/day),vitamin E for 6 months	90 oligospermozoospermic patients	Improved sperm concentration in group B and C, while total sperm motility improved in all groups	0	3	7	Unclear risk of bias for other sources								
28	Magdi et al (2017) [89]	Uncontrolled (open label)	Vitamin C (1g), vitamin e (400 mg) and L-carnitine (2g)/daily for 6 months	210 OAT patients	Improved sperm count, total and progressive motility, normal morphology after treatment	0	3	3	N/A	N/A	N/A	0					
29	Aisalman et al (2018) [90]	Uncontrolled (open label)	Zinc 220 mg/daily for 3 months	60 asthemozoospermic patients	Improved volume progressive motility, normal morphology	3	3	6	N/A	N/A	N/A	0					

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JAN/ADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
30	Nouri et al	RCT blinded	Lycopene 25 mg/daily for 3 months	44 oligozoospermic patients	Improved volume total sperm count, concentration, total motility, TAC	2	3	7	Unclear risk of bias for allocation concealment other sources	18	4	0	
31	Busetto et al (2020) [96]	RCT blinded	L – carnitine (1g) CoenzymeQ10 (20 mg), vitamin C(90 mg), zinc (10 mg), folic acid (200 µg), vitamin B12 (1.5 µg) daily for 6 months	104 patients with altered semen quality. Of those, 52 showed grade i-iii varicoceles	Improved total sperm count , total and progressive motility Higher pregnancy rate	4	3	7	No risk of bias identified	22	5	1	
32	Alahmar et al (2020) [97]	Uncontrolled (open label)	CoQ10 200 mg/daily for 3 months	65 oligoasthenozoospermic patients	Improved sperm concentration, progressive and total motility, CoQ 10 level, TAC and GPx Reduced ROS levels and SDF	4	2	4	N/A	N/A	N/A	0	
33	Terai et al (2020) [98]	RCT unblinded	L- carnitine (750, 1mg), zinc (30 mg), CoQ1 (90.26 mg), vitamin C (1g), vitamin B12 (60.1 µg), vitamin E (150 mg)	31 oligoasthenozoospermic patients	Increased total motile sperm count after treatment in group A	0	3	3	Unclear risk of allocation concealment, selective reporting, other sources, no blindness of participants and personnel	16	3	0	
34	Steiner et al (2020) [99]	RCT blinded	Vitamin c (500 mg), vitamin E (400 mg), selenium (0.20 mg), L- carnitine (1g), zinc (20 mg), folic acid (1g), lycopene (10 mg), vitamin D (2000 IU/daily) for maximum of 6 months	174 oligoospermic patients	Improved sperm concentration No change in SDF No change in pregnancy and live birth rates	2	3	7	No risk of bias identified	20	5	1	

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JAN/ADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
30	Nouri et al	RCT blinded	Lycopene 25 mg/daily for 3 months	44 oligozoospermic patients	Improved volume total sperm count, concentration, total motility, TAC	2	3	7	Unclear risk of bias for allocation concealment other sources	18	4	0	
31	Busetto et al (2020) [96]	RCT blinded	L – carnitine (1g) CoenzymeQ10 (20 mg), vitamin C(90 mg), zinc (10 mg), folic acid (200 µg), vitamin B12 (1.5 µg) daily for 6 months	104 patients with altered semen quality. Of those, 52 showed grade i-iii varicoceles	Improved total sperm count , total and progressive motility Higher pregnancy rate	4	3	7	No risk of bias identified	22	5	1	
32	Alahmar et al (2020) [97]	Uncontrolled (open label)	CoQ10 200 mg/daily for 3 months	65 oligoasthenozoospermic patients	Improved sperm concentration, progressive and total motility, CoQ 10 level, TAC and GPx Reduced ROS levels and SDF	4	2	4	N/A	N/A	N/A	0	
33	Terai et al (2020) [98]	RCT unblinded	L- carnitine (750, 1mg), zinc (30 mg), CoQ1 (90.26 mg), vitamin C (1g), vitamin B12 (60.1 µg), vitamin E (150 mg)	31 oligoasthenozoospermic patients	Increased total motile sperm count after treatment in group A	0	3	3	Unclear risk of allocation concealment, selective reporting, other sources, no blindness of participants and personnel	16	3	0	
34	Steiner et al (2020) [99]	RCT blinded	Vitamin c (500 mg), vitamin E (400 mg), selenium (0.20 mg), L- carnitine (1g), zinc (20 mg), folic acid (1g), lycopene (10 mg), vitamin D (2000 IU/daily) for maximum of 6 months	174 oligoospermic patients	Improved sperm concentration No change in SDF No change in pregnancy and live birth rates	2	3	7	No risk of bias identified	20	5	1	

CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JAN/ADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
	35	Alkumait et al (2020) [100]	RCT unblinded	CoQ10 (200 mg) for 6 months	51 OAT patients	Improved semen parameters	2	3	7	Unclear risk of bias for allocation concealment, other sources, high risk of bias for blinding	13	3	0
Healthy men	36	Goyal et al (2007) [102]	Uncontrolled (open label)	Lycopene 22.8 mg/day for 2 weeks	6 healthy men	Increased seminal lycopene. No increase in TAC levels	2	3	3	N/A	N/A	N/A	0
	37	Chayachinda et al (2020) [107]	RCT blinded	CoQ10 200 mg/day for 1 month	Leukocytospermia (n=84)	No difference in sperm concentration, motility, normal morphology	0	3	3	No risk of bias identified	22	5	1
	38	Gupta and kumar (2002) [108]	Uncontrolled (open label)	Lycopene 4 mg/daily for 3 months	30 idiopathic patients	Improved sperm concentration and motility Higher pregnancy rate	3	3	3	N/A	N/A	N/A	0
	39	Soleimani and masoumi (2017) [114]	Uncontrolled (open label)	Grape seed extract 600 mg/daily for 3 months	29 idiopathic patients	Increased catalase, reduced MDA	2	1	3	N/A	N/A	N/A	0
CLINICAL CONDITION	SN	REFERENCE	CLINICAL TRIAL DESIGN	ANTIOXIDANT FORMULATION DOSAGE AND LENGTH OF TREATMENT	STUDY POPULATION	REPRODUCTIVE OUTCOMES AFTER ANTIOXIDANT TREATMENT	CAMBRIDGE QUALITY CHECKLIST			COCHRANE RISK OF BIAS FOR RCT	CONSORT GUIDELINES (OUT OF 25)	JAN/ADAD (OXFORD QUALITY) (OUT OF 5)	QUALITY OF EVIDENCE PUBLISHED
							CHECKLIST FOR CORRELATE (OUT OF 5)	CHECKLIST FOR RISK FACTORS (OUT OF 3)	CHECKLIST FOR CASUAL RISK FACTORS				
	40	Kopets et al (2020) [115]	RCT blinded	L carnitine, L arginine (250 mg), co enzyme Q (40 mg), zinc (7.5 mg), vitamin B9 (234 mcg), vitamin B 12 (2 mcg), selenium (50 mcg) for 6 month daily	83 idiopathic patients	Increased /5 of normozoospermia in treated patients after 2 – 4 months in comparison with placebo, higher pregnancy rate	0	3	7	No risk of bias identified	24	5	1
	41	Greco et al (2005) [116]	uncontrolled (open label)	Vitamin C (1g) and vitamin E (1g)/daily for 2 months	Oligoterato (n=6) patients, 6 unexplained infertile men	Improved semen parameters and SDF No change in fertilization and cleavage rates after treatment Higher implantation and pregnancy rates	2	3	3	N/A	N/A	N/A	N/A
	42	Greco et al (2005) [117]	Uncontrolled (open label)	Vitamin C and E 1g/ daily for 2 months	64 unexplained infertile men	No difference in semen parameters Reduced SDF	1	3	7	N/A	N/A	N/A	0
	43	Safarinejad et al (2012) [118]	RCT blinded	CoQ10 200 mg/daily for 26 weeks	228 unexplained infertile men	Improved semen parameters, seminal catalase, and SOD	4	3	7	No risk of bias identified	18	5	1
	44	Hamidian et al (2020) [121]	Uncontrolled (open label)	Vitamin C 250 mg/daily for 3 months	20 patients with recurrent pregnancy loss	Improved sperm morphology Reduced SDF Changes in mRNA levels of PRM1, PRM2 and the PRM1/PRM2 ratio after treatment	2	3	4	N/A	N/A	N/A	0

1. THE VARICOCELE

A study of eleven research on male varicocele found that 90.9% of the publications included reported positive effects on semen parameters following antioxidant treatment. This suggests that antioxidant supplements may be beneficial for patients with varicocele. 75% and 83 % of low quality literature showed a positive impact on semen function (Table 3) However, the statistical significance of these findings is not significant, as a total of 41 and 24 studies reporting sperm function and semen parameters would be required to achieve a $p<0.05$ significance.

increase in semen and sperm function parameters in men with abnormal semen quality following antioxidant supplementation (Table 3). To achieve a statistical significance of $p<0.05$, 204 studies reporting sperm function results are needed.

3. IDIOPATHIC INFERTILITY IN MEN

A study of Idiopathic infertility in men found that 7 out of 10 (70 %) studies recorded sperm function biomarkers, while semen parameters were reported in 90% of the included publications (Table 3). High-quality studies showed improved sperm and semen function metrics ($p<0.0001$) following antioxidant

Table 3. number of low and high quality studies analysing semen parameters and/or sperm function after antioxidant treatment, overall as well as in each clinical condition

GROUP	CATEGORY	REPORT OF SEMEN PARAMETERS		REPORT OF SPERM FUNCTION	
		Articles on the overall number of studies	% of studies reporting improvement after AOX treatment	Articles on the overall number of studies	% of studies reporting improvement after AOX treatment
Overall (n=97)	Low quality	70/90	85.7	50/60	89.6
	High quality	20/90	65.0	12/60	58.3
Varicocele (n=11)	Low quality	9/11	75.0	6/11	83.0
	High quality	2/11	-	0/11	-
Abnormal semen quality (n=45)	Low quality	36/44	94.4	20/25	90.0**
	High quality	8/44	50.0	5/25	60.0
Idiopathic male infertility (n=10)	Low quality	6/9	83.0	5/7	80.0
	High quality	3/9	100**	2/7	100***
Unexplained male infertility (n=5)	Low quality	4/5	83.3	3/4	100***
	High quality	1/5	100**	1/4	100***

2.UNUSUAL QUALITY OF SEMEN

A study of 45 studies on males with abnormal Table 2. semen quality found that 25 out of 45 (55.6 %) identified sperm function biomarkers, and 97.8% (n =44/45) reported semen parameters following antioxidant treatment. Although not statistically significant in high-quality trials, most studies showed a significant

treatment. However, a large number of low-quality trials indicated that males with IMI who

took antioxidant supplements had improvements in semen and sperm function indices, although these differences were not statistically significant.

A total of 24 and 30 studies reporting sperm function and semen parameters reached statistical significance.

4. UNKNOWN CAUSE OF INFERTILITY IN MEN

Five studies examined the impact of antioxidant therapy on male infertiles (Table 2). All studies observed 100% improvement in semen parameters after antioxidant treatment, while sperm function biomarkers were reported in 4 out of 5 studies (80.0%) (Table 3).

However, all low-quality studies reported improvements in sperm function, requiring 41 low-quality studies to achieve a statistical significance of $p<0.05$. High-quality trials showed significant improvements in semen and

sperm function measures in males with UMI after antioxidant treatment.

5. A REVIEW OF THE MOST CURRENT WORKS

Antioxidant treatment on semen quality in total of 21 studies published between January 2019 and July 2020 was provided in Table 4. A study examining the impact of antioxidant treatment on semen quality found that 66.7% of the 21 studies reported significant improvements in sperm function and 90.5% in semen parameters. However, there were few studies examining the effects of antioxidant treatment on reproductive outcomes, with only 60% reporting an increase in pregnancy rate and no differences in birth rate found in the two studies evaluating it.

SN	REFERENCE	STUDY DESIGN	STUDY POPULATION/ SAMPLE SIZE	INCLUSION CRITERIA	EXCLUSION CRITERIA	STRICT MALE INCLUSION/EXCLUSION	FEMALE FACTOR	MAIN OUTCOMES REPORTED	POWER OF STATISTICAL ANALYSIS	STUDY QUALITY SCORE	STUDY OUTCOME (OUT OF 3)
1	Terai et al (2020) [98]	RCT unblinded	31 oligoasthenozoospermic patients	Age 20 – 60 yearsold, presence of oligozoospermia and/ or asthenozoospermia	Azoospermia Sperm concentration <5x10 ⁶ /mL Sperm motility <5% TMSC >30X10 ⁶ Clinical conditions resulting in infertility History of cancer, chemotherapy, drug abuse Administration of androgens, anti-androgens, and immunosuppressants	0	N/A	Improved TMSC ($p=0.04$)	N/A	0	1
2	Schisterman et al (2020) [46]	Double-blind RCT	Treatment (n=1,185) vs. placebo (n=1,185)	Male partners of couples planning IVF for infertility treatment	Planning of donor sperm use or a gestational surrogate Pregnancy at enrollment Obstructive azoospermia Chronic diseases	0	N/A	No difference in semen parameters between both groups. Increase in SDF by Comet assay in treatment group vs. placebo group (Adjusted MD 2.4, 95% CI 0.5-4.4) No significant differences in β-HCG-detected pregnancy, clinical intrauterine pregnancy, ectopic pregnancy, pregnancy with multiple fetuses LBR: Treatment group 404 (34%) vs. placebo group 416 (35%) (ns)	90% power at a 2-sided α level of 0.05 to detect a risk difference of 7% in LBR (implying a risk ratio of 1.10), with continuity correction and allowing for a dropout rate of 15% Estem of risk differences and risk ratios Sequential approach of Lan and DeMets with Bonferroni adjustment to distribute the 1-sided type I error rate among 3 continuous semen quality parameters Post hoc sensitivity analyses	2	0

SN	REFERENCE	STUDY DESIGN	STUDY POPULATION/SAMPLE SIZE	INCLUSION CRITERIA	EXCLUSION CRITERIA	STRICT MALE INCLUSION/EXCLUSION	FEMALE FACTOR	MAIN OUTCOMES REPORTED	POWER OF STATISTICAL ANALYSIS	STUDY QUALITY SCORE	STUDY OUTCOME (OUT OF 3)
3	Steiner et al (2020) [99]	Double-blind RCT	Treated (n=85) vs. placebo (n=86)	infertile men with abnormal semen analysis in the last 6 months or DFI≥25%	Sperm concentration <5×106/mL Consumption of fertility medication or testosterone	0	yes	No difference in semen parameters, DFI by SCSA and PR LBR: 15% AOX vs. 24% placebo (ns) LBR=35% in the treated group and 25% in the placebo group with a 17% dropout	Sample size calculation, assuming a 20% dropout rate, ≥80% power at $\alpha=0.05$	3	0
4	Kopets et al (2020) [115]	Double-blind RCT	treated (n=42) vs. placebo (n=41)	Age: 21–50 years, with IMI	Allergy to any component Any clinical cause of male or female infertility Alcohol or drug addiction Use of any investigational product within the previous 3 months	0	N/A	Significant difference between both groups as regards normalization of semen parameters at 2 months (26/42 [61.9%]) males in treatment group vs. 8/41 [19.5%] males in placebo group) and at 4 months (29/42 [69.0%] vs. 9/41 [22.0%]). Significant change from baseline in mean values for all main semen parameters at 2 and 4 months, except for sperm morphology At 6 months higher PR in treatment than placebo group (10/42 [23.8%] vs. 2/41 [4.9%])	Sample size calculation assuming 1-beta error 0.80 and type I error alpha 5% Control for confounders by ANCOVA analysis	2	0
5	Arafa et al (2020) [25]	Prospective study	Idiopathic (n=119) and unexplained male infertility (n=29)	Infertile men (20–50 years) with unknown etiology and female infertility factor	Azoospermia Sperm concentration <1×106/mL Leucocytospermia Any cause for infertility Chemotherapy Clinical endocrinopathy Abnormal hormonal profile AOXs in the past 6 months Dietary, social habits or medical conditions which may impact on oxidative stress Use of drugs	1	yes	MI: significant improvement in sperm concentration ($p<0.001$), total motility ($p=0.001$), normal morphology ($p=0.001$), ORP ($p=0.001$), SDF ($p=0.001$) by Halosperm UMI: significant improvement in progressive motility ($p=0.002$), ORP ($p=0.03$), SDF ($p=0.02$)	N/A	3	3
SN	REFERENCE	STUDY DESIGN	STUDY POPULATION/ SAMPLE SIZE	INCLUSION CRITERIA	EXCLUSION CRITERIA	STRICT MALE INCLUSION/ EXCLUSION	FEMALE FACTOR	MAIN OUTCOMES REPORTED	POWER OF STATISTICAL ANALYSIS	STUDY QUALITY SCORE	STUDY OUTCOME (OUT OF 3)
6	Nazari et al (2020) [101]	Prospective study	59 patients with idiopathic OAT	Infertile patients with at least 1 abnormal semen parameter; age≥45 years, BMI<30	Azoospermia Prostatitis Any clinical condition causing infertility History of hormonal therapy, drug addition, alcohol abuse, smoking, exposure to potential reproductive toxins	1	no	Significant improvements in sperm concentration ($p=0.004$) and normal morphology ($p=0.01$)	N/A	1	1
7	Nurmawati et al (2020) [44]	Single-blinded RCT	25 infertile men	Inclusion criteria not clearly stated	Exclusion criteria not clearly stated	0	no	Improved sperm concentration, motility, and morphology ($p<0.05$) Reduced levels of 8-OHdG levels ($p<0.01$) and MDA, with the value<1.98 being able to predict 100% of the normal sperm motility level (>40)	Sample size calculation assuming that the prevalence of male infertile couples with idiopathic causes in the world is 15% and in Indonesia 1.11%	2	2
8	Hadi et al (2020) [45]	Uncontrolled (open label)	58 infertile men	Inclusion criteria not clearly stated	Presence of varicocele, orchitis, cryptorchidism Consumption of herbs or medications that might affect seminal parameters in the last 3 months prior to the study	0	no	Improved sperm volume, count, total motility, and normal morphology ($p<0.05$)	N/A	1	1
9	Busetto et al (2020) [96]	Double-blinded RCT	104 patients with altered semen quality. Of those, 52 showed grade I-III varicoceles	Oligo- and/or astheno- and/or teratozoospermia, with or without varicocele (not surgically treated) and men from infertile couples	Known hypersensitivity to any of the compound History of undescended testes or cancer, endocrine disorders, post-pubertal mumps, genitourinary surgery, obstructive azoospermia or obstructive pathology of the urogenital system, autoimmune disease, cystic fibrosis History of taking any therapy affecting fertility, alcohol or drug abuse Subjects following any special diet or taking AOXs Involvement in any other clinical trials	0	yes	Improved total sperm count ($p<0.0001$), total ($p<0.0001$) and progressive motility ($p=0.0012$) Higher PR in treated group vs. placebo (10 vs. 2 pregnancies, respectively; $p=0.0141$)	Sample size calculation assuming $\alpha=0.05$ (significance), $\beta=0.20$ (power of 80%), and up to 15% of patients dropping out of the study esteemed	3	1
10	Alahmar et al (2020) [97]	Uncontrolled (open label)	65 oligoasthenozoospermic patients	Infertile patients showing oligoasthenozoospermia	Azoospermia Anatomical abnormalities of genital tract, varicocele, genital infection, scrotal surgery, systemic diseases Smoking Female factor Consumption of antioxidant and selective serotonin reuptake inhibitors intake in the last 6 months	1	No	Improved sperm concentration, progressive and total motility ($p<0.05$), levels of CoQ 10 ($p<0.001$), TAC ($p<0.01$) and GPx ($p<0.001$) Reduced ROS levels ($p<0.05$) and SDF by SCD assay ($p<0.01$)	N/A	2	2

SN	REFERENCE	STUDY DESIGN	STUDY POPULATION/ SAMPLE SIZE	INCLUSION CRITERIA	EXCLUSION CRITERIA	STRICT MALE INCLUSION/ EXCLUSION	FEMALE FACTOR	MAIN OUTCOMES REPORTED	POWER OF STATISTICAL ANALYSIS	STUDY QUALITY SCORE	STUDY OUTCOME (OUT OF 3)
11	Alkumait et al (2020) [100]	RCT unblinded	51 OAT patients	Normal female factor with idiopathic OAT	Presence of chronic diseases, neoplasm, trauma, hypospadias, vas deference obstruction, varicocele, and genital tract infection Receiving treatment recently	1	No	Improved sperm concentration, motility ($p=0.01$) and morphology ($p=0.03$)	N/A	1	1
12	Williams et al (2020) [104]	Double-blinded RCT	0 healthy men	Healthy male volunteers, aged 18–30 years, lived within 1 h of the clinic or planning to live in the region for the duration of the study	Previous testicular surgery Existing or previous cancer Allergy to tomato, whey protein or soy derivatives	0	No	Improved % of fast progressive ($p=0.006$) and normal morphology ($p<0.001$) No difference in SDF by TUNEL	N/A	3	1
13	Hamidian et al (2020) [121]	Uncontrolled (open label)	20 patients with recurrent pregnancy loss	Recurrency of pregnancy loss, age<40 years, no history of alcohol/drug abuse or smoking, altered semen quality	Obesity, diabetes, and varicocele Previous treatments with AOXs or other medications For the female partners, the presence of hormonal imbalance, chromosomal alterations, tubal obstruction, and bacterial or viral infections	1	yes	Improved sperm morphology ($p=0.000$) Reduced SDF by TUNEL ($p=0.00$) Reduced sperm protamine deficiency assessed by CMA3-based assay ($p=0.00$)	N/A	2	3
14	alehi et al (2019) [42]	Uncontrolled (open label)	485 infertile men with DFI>27% by SCSA	Aged 20–40 years	History of varicocele, surgery, and inflammation	1	no	Improved sperm concentration ($p=0.003$), total motility ($p=0.001$). Reduced DFI by SCSA ($p=0.001$) PR=16.8% for AOX treated patients	N/A	2	2
15	Hasoon (2019) [43]	Uncontrolled (open label)	24 infertile men	Unexplained subfertility	Presence of organic or obstructive infertility	1	no	Improved volume, sperm count, motility, and normal morphology ($p<0.005$)	N/A	0	1
16	Ardestani Zadeh et al (2019) [57]	Single blind RCT	60 varicocele patients	Varicocele patients who underwent subinguinal varicocelectomy	Usage of supplements Alcohol and/or drug addiction, smoking Diabetes mellitus, hormonal disorders, chronic or active infections Presenting side effects, and delayed complications of varicocelectomy	0	no	Improved sperm count ($p=0.021$) and motility ($p=0.003$)	N/A	2	1

SN	REFERENCE	STUDY DESIGN	STUDY POPULATION/ SAMPLE SIZE	INCLUSION CRITERIA	EXCLUSION CRITERIA	STRICT MALE INCLUSION/ EXCLUSION	FEMALE FACTOR	MAIN OUTCOMES REPORTED	POWER OF STATISTICAL ANALYSIS	STUDY QUALITY SCORE	STUDY OUTCOME (OUT OF 3)
17	Kizilay and Altay (2019) [56]	RCT unblinded	90 varicocele patients	Varicocele patients treated with varicocelectomy, with spouses<35 years old, regular hormone profiles and menstrual cycles and no identified cause of infertility	Previous genitourinary system and/or varicocele surgery IMI Any clinical condition affecting fertility for the previous 3 months Patients following a fertility specific diet Alcohol or drug abuse, smoking	0	yes	Improved TSC, sperm concentration, sperm count in normal morphology, and total and progressive motile sperm count ($p<0.05$) Higher PR in AOX treated patients than placebo group (29% vs. 17.9%, respectively; $p=0.029$)	Study powered to detect an effect size of $d=0.70$ as statistically significant in a two-tailed test with $\alpha=0.05$ and power of 0.80 with $n=24$ per condition.	3	1
18	Gambera et al (2019) [93]	Uncontrolled (open label)	32 OAT patients	Infertile patients with normal sexual development, medical history, serum hormone levels and physical examination	Azoospermia and infertility due to the female factor	0	yes	Improved sperm concentration, sperm count, progressive motility, normal morphology, and vitality Oxisperm test: reduced seminal oxidative stress after therapy (no pvalues reported)	N/A	2	2
19	Jannatifar et al (2019) [92]	Uncontrolled (open label)	50 asthenozoospermic patients	Infertile couples with no previous report of pregnancy, normal female and male partners	Varicocele, leukospermia, hormonal abnormalities, and/or obstruction, cryptorchidism, vasectomy, abnormal liver function Smoking, alcohol consumption Anatomical disorders, Klinefelter's syndrome, cancer, fever in the 90 days prior to sperm analysis, seminal sperm antibodies	1	no	Improved sperm concentration ($p=0.02$), total ($p=0.01$) and progressive motility ($p=0.001$), normal morphology ($p=0.001$), TAC ($p=0.01$) Reduced levels of MDA ($p=0.01$), SDF by TUNEL ($p=0.001$), % of sperm showing protamine deficiency by CMA3-based assay ($p=0.009$)	N/A	1	3
20	Nouri et al (2019) [95]	Double-blind RCT	44 oligozoospermic patients	Infertile men (25–45 years), sperm count<20×10 ⁶ /ml, normal sperm <65% and average motility <60%	History of anatomical disorders, endocrinopathy, previous hormonal therapy, use of androgens, antiandrogens, anticoagulants, cytotoxic drugs, or immunosuppressants Alcohol and drug abuse BMI≥30 kg/m ²	1	no	Improved volume, TSC, concentration, total motility, TAC ($p<0.05$)	N/A	2	2

SN	REFERENCE	STUDY DESIGN	STUDY POPULATION/ SAMPLE SIZE	INCLUSION CRITERIA	EXCLUSION CRITERIA	STRICT MALE INCLUSION/ EXCLUSION	FEMALE FACTOR	MAIN OUTCOMES REPORTED	POWER OF STATISTICAL ANALYSIS	STUDY QUALITY SCORE	STUDY OUTCOME (OUT OF 3)
21	Micic et al (2019) [94]	Double-blind RCT	Treatment (n=125) vs. placebo (n=50)	Total sperm number $\leq 15 \times 10^6 / \text{mL}$; progressive motility <32%; normal viscosity and normal leucocytes number ($< 1 \times 10^6 / \text{mL}$); sperm vitality $\leq 58\%$; normal sperm morphology <4%	Motility<5% Sperm concentration $< 1 \times 10^6 / \text{mL}$; History of therapy for infertility within the last 2 months Alcohol consumption Undescended testes, post-pubertal mumps, endocrine and autoimmune diseases, cystic fibrosis, or testicular cancer Hypersensitivity to ingredients in Proxeed Plus Presence of endocrine disorders, anti-sperm antibodies, leukocytospermia Use of antioxidant agents or vitamins Involvement in other clinical trials	0	yes	Improved ejaculated volume ($p=0.001$), progressive motility ($p<0.001$), vitality ($p=0.002$) after treatment Reduced SDF by Halosperm test Increased seminal carnitine and α -glucosidase activity, positively correlated with improved progressive motility	N/A	4	3

Data are summarized and ranked based on the study design, the population investigated, the inclusion/exclusion criteria, the analysis of the female partner, the main outcomes reported, and the power of the statistical analysis. SN: serial number, RCT: randomized controlled trial, TMS: total motile sperm count, N/A: not available, IVF: in vitro fertilization, SDF: sperm DNA fragmentation, MD: median, CI: confidence interval, β -HCG: beta-human chorionic gonadotropin, LBR: live birth rate, ns: non-significant, DFI: DNA fragmentation index, SCSA: sperm chromatin structure assay, AOX: antioxidant, IMI: idiopathic male infertility, ORP: oxidation reduction potential, UMI: unexplained male infertility, BMI: body mass index, 8-OHdG: 8-hydroxy-2'-deoxyguanosine, MDA: malondialdehyde, PR: pregnancy rate, CoQ: coenzyme Q, TAC: total antioxidant capacity, GPx: glutathione peroxidase, ROS: reactive oxygen species, SCD: sperm chromatin dispersion, OAT: oligoasthenoteratozoospermia, TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling, CMA3: chromomycin A3, TSC: total sperm count.

DISCUSSION

Male infertility is a prevalent issue that negatively impacts couples' ability to conceive. Oxidative stress is a common mechanism mediating these etiologies and risk factors [1,2,5,6], and the use of antioxidants as a therapy option for male infertility has expanded. However, opinions on the effectiveness, indications, dosage, and duration of treatment are still divided [8-11]. This study aimed to comprehensively examine the literature of trials looking into the use of antioxidants in male infertility and suggest some general advice for practicing clinicians. A systematic review by Majzoub and Agarwal (2018) [10] found 26 studies that demonstrated the beneficial benefits of exogenous antioxidant intake on the quality of sperm and pertinent outcomes of assisted reproduction, such as live birth rates. However, these studies were administered to a small number of men for a brief length of time, lacking a standardized test to measure oxidative stress levels in sperm and seminal fluid. The variability

of study designs made it difficult to compare the effects and draw a reliable conclusion.

The study examined 60 studies (61.9%) that examined a range of markers of seminal oxidative stress, such as oxidative DNA damage (8 – hydroxy – 2 – deoxyguanosine), lipid peroxidation markers (malondialdehyde) levels of seminal ROS, and/or several endogenous antioxidants (e.g., total antioxidant capacity assay, superoxide dismutase, catalase, glutathione) and/or oxidative-reduction potential (ORP) (Table 2). The lack of standardization in the assessment of oxidative stress in seminal fluid prior to and following therapy, the absence of thorough methodological explanations in most publications evaluating oral antioxidant supplementation, and the varying length of therapy in the examined research further complicated the findings (Table 2). A meta-analysis utilizing data from seven randomized controlled trials (RCTs) found that men with idiopathic oligoasthenoteratozoospermia can benefit from combined L-carnitine (LC) and L-acetyl carnitine (LAC) therapy [122]. The study found that increased pregnancy rates may result with LC+LAC combination therapy. However, a

strong conclusion is hampered by several limitations, including room for interpretation when making the clinical diagnosis of idiopathic oligoasthatozoospermia, substantial variation between studies in the number of patients selected, and the lack of knowledge on the chemicals' bioavailability.

CRITICAL EVALUATION OF THE NECESSITY OF ADDITIONAL DOUBLE-BLIND, RANDOMIZED, PLACEBO-CONTROLLED TRIALS

Of the 90 studies examining the impact of antioxidant treatment on semen parameters, 70 were considered low quality, and only 20 were of excellent quality. Both low- and high-quality studies showed that antioxidant treatment significantly improved semen parameters. However, there is a lack of high-caliber research to produce meaningful findings. Fertilization is a complex process, and oocyte quality must be considered when examining fertilization, pregnancy, and live birth rates. A meta-analysis by Smits et al. (2019) found that oral antioxidant supplements can increase live birth rates and reproductive potential in infertile males. However, due to research restrictions, the evidence was considered poor or very low quality, making it difficult to compare and aggregate data for reliable statistical analysis. Clinical pregnancy and live delivery are crucial outcomes for couples undergoing fertility therapy, but these statistics are rarely reported in research. The majority of studies on the application and efficacy of antioxidants focus on

male participants, not couple standardization^[11]. Confounding variables such as female age, ovarian reserve, anatomic, inflammatory, and endocrine problems can affect these outcomes, making it difficult to evaluate the effectiveness of any fertility treatment. To better understand the effectiveness of antioxidant treatments for men, it is essential to evaluate how well they improve seminal parameters and sperm function. This can have a significant negative impact on blastulation, embryo development, the onset and continuation of pregnancy, and live birth. Identifying the andrological illness that patients are receiving therapy for is essential to assess the efficacy of the intervention. 21 papers published between January 2019 and July 2020 examined the impact of antioxidant therapy on semen quality, with most revealing improvements in sperm and semen parameters. However, many studies did not sufficiently establish criteria for female factors, which could impact the study's findings. In addition, individual research may highlight important topics, such as non-specific treatment off-site, early stop-ups, and compliance with antioxidant therapy. Overall, a comprehensive review of the literature is needed to better understand the impact of antioxidant treatments on fertility outcomes.

Moreover, Terai et al. ^[98] used an experimental group studying a Chinese herbal compound rather than a placebo group. Improvements in semen parameters were reported by Hadi et al. ^[45], Alahmar et al. ^[97], Hamidian et al. ^[121],

Salehi et al. [42], Hasoon [43], Gambera et al. [93], Arafa et al. [25], Nazari et al. [101], and Jannatifar et al. [92], however these investigations are uncontrolled open label trials and are rather small in size. Additionally, unblinded experiments with relatively small sample sizes (n = 51 and 31, respectively) were conducted by Alkumait et al. [100] and Terai et al. [98]. However, there are a number of commendable aspects of the evaluated studies as well. For instance, Agarwal et al.'s work [129] examined how antioxidant therapy affected protein expression, which improved our knowledge of the molecular modifications to physiology. Numerous investigations evaluated how antioxidant therapy affected SDF levels (Table 2). Because of the previously mentioned factors, conducting additional double-blind RCT studies with a sizable enough sample size is not practical nor likely to yield the desired, definitive outcome of higher live birth rates following antioxidant treatment.

SWOT ANALYSIS,

STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS

1. STRENGTH

Over the past decade, research has increasingly explored the use of antioxidant supplements to treat male infertility. Various formulations have been used to improve sperm quality and function, leading to improvements in reproductive outcomes like birth rate (Table 2). The growing body of research also examines

how antioxidant therapy affects oxidative stress metrics, suggesting it may be a viable therapeutic option for individuals with altered seminal redox potential.

2. WEAKNESSES

The systematic use of antioxidants for treating male infertility is restricted due to conflicting results in trials, which did not consider female and embryological confounding factors (Table 2). The treatment was assumed to improve reproductive outcomes, and low quality evidence was inferred from benefit-reporting clinical trials due to non-homogenous study designs or inconsistent usage of individual or combination therapy regimens. Most studies did not account for confounding variables, such as female characteristics, crucial for pregnancy formation.

3. OPPORTUNITIES

Oxidative stress monitoring can identify potential candidates for antioxidant supplementation in idiopathic infertile males [25]. The concept of MOSI can help identify a subset of males who may benefit from the treatment [2]. Oral antioxidants can be a more affordable alternative for infertile couples who prefer not to undergo assisted reproduction (Fig 3) [129].

4. THREATS

A consensus among doctors remains elusive despite the result from Cochrane reviews that oral antioxidant therapy may improve semen parameters and the likelihood of conception [11].

This is due to a lack of sufficient high-quality evidence. Furthermore, the large range in the treatment plan prompts questions regarding the overuse of antioxidants. Reductive stress can have harmful consequences that are just as pathogenic as oxidative stress [23]. Furthermore,

the frequently erratic results of antioxidant supplements in the presence of numerous confounding variables in reproduction may cause a delay in the start of the final course of treatment, especially for older couples.

Fig 3. Strength weakness opportunity treat (swot) analysis. The effect of antioxidant supplementation in the management of male infertility has been examined using SWOT analysis. Assisted reproductive technologies, or

CLINICAL GUIDELINES

Doctors have yet to reach a consensus on the effectiveness of oral antioxidant therapy in improving semen parameters and conception likelihood, despite Cochrane reviews showing promising results [11]. The large treatment plan raises concerns about overuse of antioxidants, as reductive stress can have harmful consequences [23]. Additionally, the erratic results of antioxidant supplements, combined with confounding variables in reproduction, may delay treatment, particularly for older couples. The use of antioxidant supplements for treating male factor infertility is not well-established, and a systematic review of 97 papers examined the impact of antioxidant treatment on different causes of male infertility. However, there is insufficient data to provide evidence-based recommendations for antioxidant use, as few

studies have examined its impact on semen quality in men with genitourinary inflammation (n = 3), hyperinsulinemic states (n = 1), and recurrent pregnancy loss (n=1)(Table 2)

The limited number of studies and challenges in recruiting a large enough patient population make statistical analysis difficult. However, some high-quality studies are available, but the number of investigations in specific conditions and using predetermined criteria would be too high. The use of antioxidant treatments would be futile without proper patient identification and testing for oxidative stress. Based on the evaluated research, recommendations for antioxidant treatment were developed for males with abnormal semen quality, IMI, UMI, and clinical varicocele. However, the previously published studies cannot be considered high-quality due to improper reporting of

characteristics. If oxidative stress is the cause of the illness, antioxidant treatment is feasible and may lead to improved male seminal parameters. However, therapy needs to be closely monitored to prevent antioxidant overdose and to determine if other therapies are necessary or if the therapy is not working as intended.

1.ABNORMAL QUALITY OF SEMEN

Antioxidants have been studied as a potential treatment for reactive oxygen species (ROS) toxicity, particularly in the reproductive system. Seminal oxidative stress is a prevalent pathology. A review found that low-quality studies claimed significant improvements in sperm function measurements and traditional semen parameters, but credible research did not find this. A recent Cochrane review showed gradual improvement in conventional semen characteristics, but the results were not trustworthy due to significant variation among trials [11].

2.THE VARICOCELE

About 40% of men with primary infertility and up to 80% of men with secondary infertility have varicocele, the most common correctable cause of male infertility. Research has shown that infertile men with varicocele exhibit elevated levels of oxidative stress, which could support the use of antioxidants as a preventative measure against varicocele. However, in most cases, the gold standard procedure for long-term improvements in semen characteristics and natural conception is still varicocelectomy [137].

Most research investigating the impact of antioxidant supplementation on sperm function and semen parameters was of poor quality, and there is insufficient data to justify the use of antioxidants as the only treatment for varicocele. A recent comprehensive review and meta-analysis investigated the effectiveness of antioxidants in enhancing semen quality following varicocelectomy [138]. The study found notable improvements in sperm concentration ($p<0.001$), overall motility ($p=0.03$), progressive motility ($p<0.001$), and normal morphology ($p<0.001$) for the therapy group, but pregnancy rates did not rise. This result confirms that antioxidant therapy has an additional benefit on individuals having varicocelectomy, and that antioxidants and varicocele ligation together lead to additional improvement in semen parameters (grade C recommended).

3.IDIOPATHIC MALE INFERTILITY AND INFERTILITY IN MEN WITHOUT APPARENT CAUSE

Antioxidants are often used to treat patients with Infertility-Metabolic Syndrome (IMS) or Uncontrolled Menstrual Infertility (UMI), which are characterized by abnormal semen and infertility. The prevalence of IMI and UMI is between 30%-58% and 6%-27%, respectively. Oxidative stress is present in 30%-40% of UMI patients and up to 80% of IMI patients, and it is believed to play a significant role in the pathophysiology of infertility. High-quality research shows that antioxidant use significantly improves sperm function and semen parameters

in men with IMI and UMI. However, further research is needed to achieve statistical significance. A systematic analysis of 32 trials found improvements in semen parameters, with sperm motility showing the greatest benefit. Antioxidant therapy has not been well studied in people with UMI, but a recent trial showed a significant drop in ORP levels and SDF levels after treatment. Antioxidants are strongly recommended to improve sperm quality in males with IMI and UMI, with a grade B recommendation.

THE PRESENT SITUATION AND RECOMMENDATIONS FOR ANTIOXIDANT RESEARCH IN THE FUTURE

Reactive oxygen species (ROS) play a crucial role in the physiological processes of sperm fertilization and their impact on sperm functionality. To achieve therapeutic effects, the proper ratio and concentration of antioxidants are critical. Oxidative stress assessment needs to be standa

rdized,

as

many

studie

s lack

measu

remen

t or

use

variou

s methods. Secondary Deoxygenated Peroxide (SDF) is a significant predictor of future fertility and is increasingly used in the assessment of male factor infertility. SDF testing can help identify patients who may benefit most from antioxidant therapy and how well they respond to it. Treatment options for high SDF results include recurrent ejaculation, antioxidant therapy, lifestyle changes, varicocelectomy, and using testicular sperm for ICSI or other sophisticated sperm selection techniques. Finding the secondary effects of bioactive substances and their molecular mechanisms of action is crucial for the safe application of oral antioxidants in a therapeutic environment. Oral antioxidant prescriptions should be tailored or modified based on variables such as antioxidant enzyme levels and reactive oxygen species (ROS) found in spermatozoa and seminal fluid. Reproduction should be seen as a shared responsibility of both partners, with both contributing equally to the reproductive outcome. High antioxidant levels have the

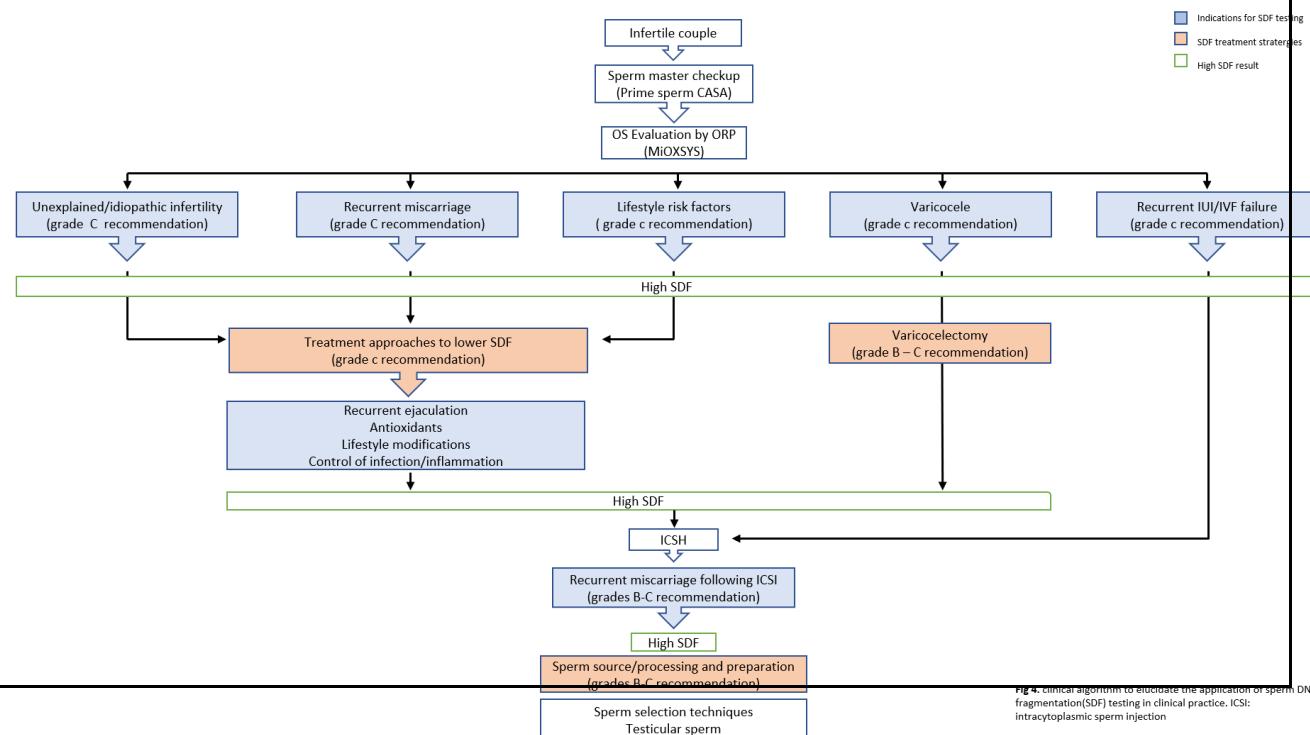


Fig 4. Clinical algorithm to elucidate the application of sperm DNA fragmentation (SDF) testing in clinical practice. ICSI: intracytoplasmic sperm injection

potential to cause teratogenic effects, and trials reporting antioxidants on male infertility are

heterogeneous

CONCLUSION

This systematic review highlights the advantages of oral antioxidants in enhancing semen parameters and pregnancy outcomes. However, there are five primary obstacles that have hindered their widespread adoption in the management of male infertility: lack of randomized, placebo-controlled trials, type of antioxidant to be taken, dosage, length of therapy, and cost. To address these challenges, it is recommended to use antioxidants that can pass across the blood-epididymis and blood-testis barriers. A well-balanced formulation is essential to avoid paradoxical prooxidant effects and less

impact on proper fertilization, embryo growth, and the efficacy of ART. High SDF results can improve patients' chances of becoming pregnant, and further research is needed to identify which cases need improved detection methods for sperm selected for ICSI. Lastly, the cost argument must be considered when considering the sponsors of excellent randomized, double-blind, placebo-controlled clinical trials. Natural antioxidant formulations are inexpensive and supported by safety, effectiveness, and cost savings for patients and healthcare systems. In conclusion, it is recommended to use antioxidants easily absorbed via the blood-epididymis and blood-testis barriers.

Conflict of interest

The author declared no conflict of interest

REFERENCE

1. Agarwal A, Mulgund A, Hamada A, Chyatte MR, A unique view on male infertility around the globe, Reprod Biol Endocrinol, 2015,13,37.
2. Agarwal A, Parekh N, Panner Selvam MK, Henkel R, Shah R, Homa ST, et al. Male oxidative stress infertility (MOSI), proposed terminology and clinical practice guidelines for management of idiopathic male infertility, World J Mens Health, 2019,37,296-312.
3. Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility, diagnosis and management, Int Braz J Urol, 2012,38,576-94.

4. Leisegang K, Dutta S, Do lifestyle practices impede male fertility?, *Andrologia*, 2020.
5. Leisegang K, Henkel R. Oxidative stress, relevance, evaluation, and management. In, Rizk B, Agarwal A, Sabanegh ES, *Male infertility in reproductive medicine, diagnosis and management*, Boca Raton, 2019, 119-28.
6. Cardoso JP, Cocuzza M, Elterman D. Optimizing male fertility, oxidative stress and the use of antioxidants, *World J Urol*, 2019,37,1029-34.
7. Kuchakulla M, Soni Y, Patel P, Parekh N, Ramasamy R. A systematic review and evidence-based analysis of ingredients in popular male fertility supplements, *Urology* 2020,136,133-41.
8. Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. *Cochrane Database Syst Rev*, 2011,1, 120-125
9. Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility, *Cochrane Database Syst Rev*, 2014,12,1-10
10. Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility, benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate, *Arab J Urol* 2018,16,113-24.
11. Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. *Cochrane Database Syst Rev* 2019,3, 213 -220
12. Adewoyin M, Ibrahim M, Roszaman R, Isa MLM, Alewi NAM, Rafa AAA, et al. Male infertility, the effect of natural antioxidants and phytochemicals on seminal oxidative stress. *Diseases* 2017,5,9.
13. Buhling K, Schumacher A, Eulenburg CZ, Laakmann E. Influence of oral vitamin and mineral supplementation on male infertility, a meta-analysis and systematic review, *Reprod Biomed Online*,2019,39,269-79.
14. McPherson NO, Shehadeh H, Fullston T, Zander-Fox DL, Lane M. Dietary micronutrient supplementation for 12 days in obese male mice restores sperm oxidative stress, *Nutrients* 2019,,11,2196.
15. Salas-Huetos A, Bulló M, Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability, a systematic review of observational studies, *Hum Reprod Update* 2017,23,371-89.
16. Chattopadhyay R, Yasmin S, Chakravarty B. Effect of continuous 6 months oral antioxidant combination with universally recommended dosage in idiopathic male infertility,2016,7,1-6.
17. Da Silva TM, Maia MCS, Arruda JT, Approbato FC, Mendonça CR, Approbato MS. Folic acid does not improve semen parameters in subfertile men, a double-blind, randomized, placebo-controlled study. *JBRA Assist Reprod*, 2013,17,152-7.
18. Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men, *Arch Androl*, 2003,49,83-94.
19. Kessopoulou E, Powers HJ, Sharma KK, Pearson MJ, Russell JM, Cooke ID, et al. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen

species associated male infertility, *Fertil Steril* 1995,64,825-31.

20. Ménézo YJ, Hazout A, Panteix G, Robert F, Rollet J, CohenBacrie P, et al. Antioxidants to reduce sperm DNA fragmentation, an unexpected adverse effect. *Reprod Biomed Online*, 2007,14,418-21.

21. Halliwell B. Free radicals and antioxidants - quo vadis? *Trends Pharmacol Sci*, 2011,32,125-30.

22. Castagné V, Lefèvre K, Natero R, Clarke PG, Bedker DA. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. *Neuroscience* 1999,93,313-20.

23. Henkel R, Sandhu IS, Agarwal A. The excessive use of antioxidant therapy, a possible cause of male infertility? *Andrologia* 2019,51,31-62.

24. Panner Selvam MK, Agarwal A, Henkel R, Finelli R, Robert KA, Iovine C, et al. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. *Free Radic Biol Med*, 2020,152,375-85.

25. Arafa M, Agarwal A, Majzoub A, Panner Selvam MK, Baskaran S, Henkel R, et al. Efficacy of antioxidant supplementation on conventional and advanced sperm function tests in patients with idiopathic male infertility. *Antioxidants (Basel)* 2020,9,219.

26. Busetto GM, Agarwal A, Virmani A, Antonini G, Ragonesi G, Del Giudice F, et al. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele, a double-blind placebo-controlled study. *Andrologia* 2018,50,12-27.

27. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses, the PRISMA statement, *PLoS Med*, 2009.

28. Murray J, Farrington DP, Eisner MP. Drawing conclusions about causes from systematic reviews of risk factors, the Cambridge Quality Checklists. *J Exp Criminol* 2009,5,1-23.

29. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al., Cochrane Bias Methods Group, Cochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials, *BMJ*, 2011,343.

30. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials, is blinding necessary? *Control Clin Trials*, 1996,17,1-12.

31. Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement, updated guidelines for reporting parallel group randomised trials. *BMJ*, 2010,332-340

32. Roseff SJ. Improvement in sperm quality and function with French maritime pine tree bark extract. *J Reprod Med*, 2002,47,821-4.

33. Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment, *Aust N Z J Obstet Gynaecol*, 2007,47,216-21.

34. Tunc O, Thompson J, Tremellen K. Improvement in sperm DNA quality using an oral antioxidant therapy. *Reprod Biomed Online*, 2009,18,761-8.

35. Shukla KK, Mahdi AA, Ahmad MK, Jaiswar SP, Shankwar SN, Tiwari SC. Mucuna pruriens reduces stress and improves the quality of semen in infertile

men, Evid Based Complement Alternat Med, 2010,7,137-44.

36. Bejarano I, Monllor F, Marchena AM, Ortiz A, Lozano G, Jiménez MI, et al. Exogenous melatonin supplementation prevents oxidative stress-evoked DNA damage in human spermatozoa, *J Pineal Res*, 2014,57,333-9.

37. Martínez-Soto JC, Domingo JC, Cordobilla B, Nicolás M, Fernández L, Albero P, et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation, *Syst Biol Reprod Med*, 2016,62,387-95.

38. Hosseini J, Mardi Mamaghani A, Hosseinifar H, Sadighi Gilani MA, Dadkhah F, Sepidarkish M. The influence of ginger (*Zingiber officinale*) on human sperm quality and DNA fragmentation, a double-blind randomized clinical trial, *Int J Reprod Biomed*, 2016,14,533-40.

39. Stenqvist A, Oleszczuk K, Leijonhufvud I, Giwercman A. Impact of antioxidant treatment on DNA fragmentation index, a double-blind placebo-controlled randomized trial, *Andrology* 2018,6,811-6.

40. Ahmad MK, Mahdi AA, Shukla KK, Islam N, Jaiswar SP, Ahmad S. Effect of Mucuna pruriens on semen profile and biochemical parameters in seminal plasma of infertile men, *Fertil Steril*, 2008,90,627-35.

41. Alizadeh F, Javadi M, Karami AA, Gholaminejad F, Kavianpour M, Haghigian HK. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men, a randomized clinical trial, *Phytother Res*, 2018,32,514-21.

42. Salehi P, Zahra Shahrokh S, Kamran T, Ajami A, Taghiyar S, Reza Deemeh M. Effect of antioxidant therapy on the sperm DNA integrity improvement, a longitudinal cohort study, *Int J Reprod Biomed*, 2019,17,99-106.

43. Hasoon MA. Using of the L-arginine and co-enzyme Q10 shows improvement of the male subfertility, *IJDRT*, 2019,9,544-51.

44. Nurmawati D, Hinting A, Sudjarwo. Astaxanthin improves erythrocyte sedimentation rate (ESR), Malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OH-Dg) levels, and semen quality in human sperm, *IJSTR*, 2020,9,6896-903.

45. Hadi AM, Abbass YI, Yadgar MA. The impact of L-carnitine supplement on semen variables and the levels of sexual hormones (serum LH, FSH, testosterone, and inhibin) in males with infertility. *Medico Leg Update*, 2020,20,772-6.

46. Schisterman EF, Sjaarda LA, Clemons T, Carrell DT, Perkins NJ, Johnstone E, et al. Effect of folic acid and zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment, a randomized clinical trial. *JAMA*, 2020,323,35-48.

47. Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AM, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men, *Prostaglandins Leukot Essent Fatty Acids*, 2000,63,159-65.

48. Paradiso Galatioto G, Gravina GL, Angelozzi G, Sacchetti A, Innominato PF, Pace G, et al. May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele? *World J Urol*, 2008,26,97-102.

49. Oliva A, Dotta A, Multigner L. Pentoxifylline and antioxidants improve sperm quality in male patients with varicocele. *Fertil Steril* 2009;91:4,536-9.

50. Festa R, Giacchi E, Raimondo S, Tiano L, Zuccarelli P, Silvestrini A, et al. Coenzyme Q10 supplementation in infertile men with low-grade varicocele, an open, uncontrolled pilot study, *Andrologia*, 2014;46,805-7.

51. Pourmand G, Movahedin M, Dehghani S, Mehrsai A, Ahmadi A, Pourhosein M, et al. Does L-carnitine therapy add any extra benefit to standard inguinal varicocelectomy in terms of deoxyribonucleic acid damage or sperm quality factor indices, a randomized study. *Urology* 2014;84,821-5.

52. Nematollahi-Mahani SN, Azizollahi GH, Baneshi MR, Safari Z, Azizollahi S. Effect of folic acid and zinc sulphate on endocrine parameters and seminal antioxidant level after varicocelectomy, *Andrologia* 2014;46,240-5.

53. Cyrus A, Kabir A, Goodarzi D, Moghimi M. The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men, a double blind placebo controlled clinical trial, *Int Braz J Urol* 2015;41,230-8.

54. Gual-Frau J, Abad C, Amengual MJ, Hannaoui N, Checa MA, Ribas-Maynou J, et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. *Hum Fertil (Camb)*, 2015;18,225-9.

55. Barekat F, Tavalaee M, Deemeh MR, Bahreinian M, Azadi L, Abbasi H, et al. A preliminary study, N-acetyl-L-cysteine improves semen quality following varicocelectomy, *Int J Fertil Steril*, 2016;10,120-6.

56. Kızılay F, Altay B. Evaluation of the effects of antioxidant treatment on sperm parameters and pregnancy rates in infertile patients after varicocelectomy, a randomized controlled trial. *Int J Impot Res*, 2019;31,424-31.

57. Ardestani Zadeh A, Arab D, Kia NS, Heshmati S, Amirkhalili SN. The role of vitamin E - selenium - folic acid supplementation in improving sperm parameters after varicocelectomy, a randomized clinical trial, *Urol J*, 2019;16,495-500.

58. Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility, protective role of vitamin E, *J Androl*, 1996;17,530-7.

59. Rolf C, Cooper TG, Yeung CH, Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E, a randomized, placebo-controlled, double-blind study, *Hum Reprod*, 1999;14,1028-33.

60. Vicari E, Calogero AE. Effects of treatment with carnitines in infertile patients with prostatitis-epididymitis. *Hum Reprod* 2001;16,2338-42.

61. Suzuki M, Kurabayashi T, Yamamoto Y, Fujita K, Tanaka K. Effects of antioxidant treatment in oligozoospermic and asthenozoospermic men, *J Reprod Med*, 2003;48,707-12.

62. Baleria G, Mosca F, Mantero F, Boscaro M, Mancini A, Ricciardo-Lamonica G, et al. Coenzyme Q(10) supplementation in infertile men with idiopathic asthenozoospermia, an open, uncontrolled pilot study, *Fertil Steril* 2004;81,93-8.

63. Piomboni P, Gambera L, Serafini F, Campanella G, Morgante G, De Leo V. Sperm quality improvement after natural antioxidant treatment of

asthenoteratospermic men with leukocytospermia. Asian J Androl, 2008,10,201-6.

64. Ghanem H, Shaeer O, El-Segini A. Combination clomiphene citrate and antioxidant therapy for idiopathic male infertility, a randomized controlled trial. Fertil Steril 2010,93,2232-5.

65. Ahmad MK, Mahdi AA, Shukla KK, Islam N, Rajender S, Madhukar D, et al. Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fertil Steril 2010,94,989-96.

66. Nadjarzadeh A, Sadeghi MR, Amirjannati N, Vafa MR, Motevalian SA, Gohari MR, et al. Coenzyme Q10 improves seminal oxidative defense but does not affect on semen parameters in idiopathic oligoasthenoteratozoospermia, a randomized double-blind, placebo controlled trial. J Endocrinol Invest 2011,34,224-8.

67. Shukla KK, Mahdi AA, Mishra V, Rajender S, Sankhwar SN, Patel D, et al. Withania somnifera improves semen quality by combating oxidative stress and cell death and improving essential metal concentrations. Reprod Biomed Online 2011,22,421-7.

68. Safarinejad MR. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic antioxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia, a double-blind, placebocontrolled, randomised study. Andrologia 2011,43,38-47.

69. Safarinejad MR. Effect of pentoxifylline on semen parameters, reproductive hormones, and seminal plasma antioxidant capacity in men with

idiopathic infertility, a randomized double-blind placebo-controlled study. Int Urol Nephrol, 2011,43,315-28.

70. Moslemi MK, Tavanbakhsh S. Selenium-vitamin E supplementation in infertile men, effects on semen parameters and pregnancy rate. Int J Gen Med 2011,4,99-104.

71. Safarinejad MR, Shafiei N, Safarinejad S. A prospective double-blind randomized placebo-controlled study of the effect of saffron (Crocus sativus Linn.) on semen parameters and seminal plasma antioxidant capacity in infertile men with idiopathic oligoasthenoteratozoospermia. Phytother Res,2011,25,508-16.

72. Safarinejad MR. The effect of coenzyme Q10 supplementation on partner pregnancy rate in infertile men with idiopathic oligoasthenoteratozoospermia, an open-label prospective study. Int Urol Nephrol 2012,44,689-700.

73. Abad C, Amengual MJ, Gosálvez J, Coward K, Hannaoui N, Benet J, et al. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia, 2013,45,211-6.

74. Ajayi R, Okhowat J, Spitzer D, Schechinger B, Zech NH. Impact of antioxidative supplementation on semen quality according to MSOME criteria. JBRA Assist Reprod, 2013,17,27-31.

75. Nadjarzadeh A, Shidfar F, Amirjannati N, Vafa MR, Motevalian SA, Gohari MR, et al. Effect of coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma, a double-blind randomised clinical trial, Andrologia, 2014,46,177-83.

76. Raigani M, Yaghmaei B, Amirjannti N, Lakpour N, Akhondi MM, Zeraati H, et al. The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men, *Andrologia*, 2014,46,956-62.

77. Kobori Y, Ota S, Sato R, Yagi H, Soh S, Arai G, et al. Antioxidant cosupplementation therapy with vitamin C, vitamin E, and coenzyme Q10 in patients with oligoasthenozoospermia, *Arch Ital Urol Androl*, 2014,86,1-4.

78. Thakur AS, Littarlu GP, Funahashi I, Painkara US, Dange NS, Chauhan P. Effect of ubiquinol therapy on sperm parameters and serum testosterone levels in oligoasthenozoospermic infertile men, *J Clin Diagn Res* 2015,9,1-3.

79. Kobori Y, Suzuki K, Iwahata T, Shin T, Sadaoka Y, Sato R, et al. Improvement of seminal quality and sexual function of men with oligoasthenoteratozoospermia syndrome following supplementation with L-arginine and Pycnogenol®. *Arch Ital Urol Androl*, 2015,87,190-3.

80. Hadwan MH, Almashhedy LA, Alsalmi AR. Oral zinc supplementation restores superoxide radical scavengers to normal levels in spermatozoa of Iraqi asthenospermic patients, *Int J Vitam Nutr Res*, 2015,85,165-73.

81. Al-Hilli AS, Al-Mousawi NAH, Ali AS. Use of Simvastatin as antioxidant drug significantly decreases lipid peroxidation by utilization of malondialdehyde (MAD) level assay as an indicator of spermatozoal oxidative stress in male infertile patient, *Kufa Med J* 2009,12,488-95

82. Martinez AM, Sordia-Hernández LH, Morales JA, Merino M, Vidal O, Garza MRG, et al. A randomized clinical study assessing the effects of the antioxidants, resveratrol or SG1002, a hydrogen sulfide prodrug, on idiopathic oligoasthenozoospermia. *Asian Pac J Reprod*, 2015,4,106-11.

83. Gvozdjáková A, Kucharská J, Dubravicky J, Mojto V, Singh RB. Coenzyme Q10, α -tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. *Dis Markers*, 2015,2015,827-941.

84. ElSheikh MG, Hosny MB, Elshenoufy A, Elghamrawi H, Fayad A, Abdelrahman S. Combination of vitamin E and clomiphene citrate in treating patients with idiopathic oligoasthenozoospermia, a prospective, randomized trial, *Andrology*, 2015,3,864-7.

85. Montanino Oliva M, Minutolo E, Lippa A, Iaconianni P, Vaiarelli A. Effect of myoinositol and antioxidants on sperm quality in men with metabolic syndrome, *Int J Endocrinol* 2016,2016,1,674-950.

86. Singh A, Jahan N, Radhakrishnan G, Banerjee BD. To evaluate the efficacy of combination antioxidant therapy on oxidative stress parameters in seminal plasma in the male infertility, *J Clin Diagn Res*, 2016,10,14-7.

87. Alahmar AT. Effect of vitamin C, vitamin E, zinc, selenium, and coenzyme Q10 in infertile men with idiopathic oligoasthenozoospermia. *IJIFM*, 2017,8,45-9.

88. Yamamoto Y, Aizawa K, Mieno M, Karamatsu M, Hirano Y, Furui K, et al. The effects of tomato juice on male infertility. *Asia Pac J Clin Nutr*, 2017,26,65-71.

89. Magdi Y, Darwish E, Elbashir S, Majzoub A, Agarwal A. Effect of modifiable lifestyle factors and

antioxidant treatment on semen parameters of men with severe oligoasthenoteratozoospermia. *Andrologia*, 2017,49,1,26-94.

90. Alsalmal ARS, Almashhedy LA, Hadwan MH. Effect of oral zinc supplementation on the thiol oxido-reductive index and thiol-related enzymes in seminal plasma and spermatozoa of Iraqi asthenospermic patients. *Biol Trace Elem Res*, 2018,184,340-9.

91. Lu XL, Liu JJ, Li JT, Yang QA, Zhang JM. Melatonin therapy adds extra benefit to varicelectomy in terms of sperm parameters, hormonal profile and total antioxidant capacity, a placebo-controlled, double-blind trial. *Andrologia*, 2018,50,13033.

92. Jannatifar R, Parivar K, Roodbari NH, Nasr-Esfahani MH. Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. *Reprod Biol Endocrinol*, 2019,17,24.

93. Gambera L, Stendardi A, Ghelardi C, Fineschi B, Aini R. Effects of antioxidant treatment on seminal parameters in patients undergoing in vitro fertilization. *Arch Ital Urol Androl*, 2019,91,187-190.

94. Micic S, Lalic N, Djordjevic D, Bojanic N, Bogavac-Stanojevic N, Busetto GM, et al. Double-blind, randomised, placebocontrolled trial on the effect of L-carnitine and L-acetylcarnitine on sperm parameters in men with idiopathic oligoasthenozoospermia. *Andrologia*, 2019,51,132-167.

95. Nouri M, Amani R, Nasr-Esfahani M, Tarrahi MJ. The effects of lycopene supplement on the spermatogram and seminal oxidative stress in infertile men, a randomized, double-blind, placebo-

controlled clinical trial. *Phytother Res*, 2019,33,320-311.

96. Busetto GM, Del Giudice F, Virmani A, Sciarra A, Maggi M, Ferro M, et al. Body mass index and age correlate with antioxidant supplementation effects on sperm quality, post hoc analyses from a double-blind placebo-controlled trial. *Andrologia*, 2020,52,135-23.

97. Alahmar AT, Calogero AE, Sengupta P, Dutta S. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. *World J Mens Health*, 2020.

98. Terai K, Horie S, Fukuhara S, Miyagawa Y, Kobayashi K, Tsujimura A. Combination therapy with antioxidants improves total motile sperm counts, a preliminary study. *Reprod Med Biol*, 2020,19,89-94.

99. Steiner AZ, Hansen KR, Barnhart KT, Cedars MI, Legro RS, Diamond MP, et al., Reproductive Medicine Network. The effect of antioxidants on male factor infertility, the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. *Fertil Steril*, 2020,113,552-60.

100. Alkumait MHMS, Abdul-Aziz MM, Nima MH. The effect of glutathione versus co-enzyme Q10 on male infertility original study. *Medico Leg Update*, 2020,20,409-14.

101. Nazari L, Salehpour S, Hosseini S, Allameh F, Jahanmardi F, Azizi E, et al. Effect of antioxidant supplementation containing L-carnitine on semen parameters, a prospective interventional study, *JBRA Assist Reprod*, 2020.

102. Goyal A, Chopra M, Lwaleed BA, Birch B, Cooper AJ. The effects of dietary lycopene

supplementation on human seminal plasma. *BJU Int*, 2007,99,1456-60.

103. Tartibian B, Maleki BH. The effects of honey supplementation on seminal plasma cytokines, oxidative stress biomarkers, and antioxidants during 8 weeks of intensive cycling training. *J Androl*, 2012,33,449-61.

104. Williams EA, Parker M, Robinson A, Pitt S, Pacey AA. A randomized placebo-controlled trial to investigate the effect of lactolycopene on semen quality in healthy males, *Eur J Nutr*, 2020,59,825-33

105. Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. *Fertil Steril*, 2002,78,1203-8.

106. Yang CC, Chen JC, Chen GW, Chen YS, Chung JG. Effects of Shao-Fu-Zhu-Yu-Tang on motility of human sperm. *Am J Chin Med*, 2003,31,573-9.

107. Chayachinda C, Thamkhantho M, Ngamskulrungroj P. Effects of coenzyme Q10 on sperm motility of infertile men with pyospermia treated with doxycycline, a randomized controlled trial. *J Med Assoc Thai*, 2020,103,121-7.

108. Gupta NP, Kumar R. Lycopene therapy in idiopathic male infertility--a preliminary report. *Int Urol Nephrol*, 2002,34,369-72.

109. Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined Lcarnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. *Fertil Steril* 2005,84,662-71.

110. Heidary M, Vahabi S, Reza Nejadi J, Delfan B, Birjandi M, Kaviani H, et al. Effect of saffron on semen parameters of infertile men. *Urol J*, 2008,5,255-9.

111. Ciftci H, Verit A, Savas M, Yeni E, Erel O. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status. *Urology*, 2009,74,73-6.

112. Haghigian HK, Haidari F, Mohammadi-Asl J, Dadfar M. Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. *Fertil Steril*, 2015,104,318-24.

113. Soleimani M, Masoumi N. The effect of grape seed extract on semen oxidative stress markers in men with idiopathic infertility, a cross-sectional before-after study. *Nephro-Urol Mon* 2017,9,137-138.

114. Negri L, Benaglia R, Monti E, Morenghi E, Pizzocaro A, Levi Setti PE. Effect of superoxide dismutase supplementation on sperm DNA fragmentation. *Arch Ital Urol Androl*, 2017,89,212-8.

115. Kopets R, Kuibida I, Chernyavskaya I, Cherepanov V, Mazo R, Fedevych V, et al. Dietary supplementation with a novel lcarnitine multi-micronutrient in idiopathic male subfertility involving oligo-, astheno-, teratozoospermia, a randomized clinical study. *Andrology*, 2020,8,1184-93.

116. Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, et al. ICSI in cases of sperm DNA damage, beneficial effect of oral antioxidant treatment. *Hum Reprod*, 2005,20,259-304.

117. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of

sperm DNA fragmentation by oral antioxidant treatment. *J Androl*, 2005, 26, 349-53.

118. Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S. Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility, a double-blind, placebo controlled, randomized study. *J Urol*, 2012, 188, 52631.

119. Khani B, Bidgoli SR, Moattar F, Hassani H. Effect of sesame on sperm quality of infertile men. *J Res Med Sci*, 2013, 18, 1847.

120. Bosman E, Esterhuizen AD, Rodrigues FA, Becker PJ, Hoffmann WA. Effect of metformin therapy and dietary supplements on semen parameters in hyperinsulinaemic males. *Andrologia*, 2015, 47, 974-9.

121. Hamidian S, Talebi AR, Fesahat F, Bayat M, Mirjalili AM, Ashrafzadeh HR, et al. The effect of vitamin C on the gene expression profile of sperm protamines in the male partners of couples with recurrent pregnancy loss, a randomized clinical trial. *Clin Exp Reprod Med*, 2020, 47, 68-76.

122. Zhang X, Cui Y, Dong L, Sun M, Zhang Y. The efficacy of combined L-carnitine and L-acetyl carnitine in men with idiopathic oligoasthenoteratozoospermia, a systematic review and meta-analysis. *Andrologia*, 2020, 52, 134-170.

123. Prasad S, Tiwari M, Pandey AN, Shrivastav TG, Chaube SK. Impact of stress on oocyte quality and reproductive outcome. *J Biomed Sci*, 2016, 23-36.

124. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates, a systematic review and meta-analysis. *Hum Reprod*, 2012, 27, 2908-17.

125. Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, et al. Paternal influence of sperm DNA integrity on early embryonic development. *Hum Reprod*, 2014, 29, 2402-12.

126. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. *J Exp Zool* 1999, 284, 696-704.

127. Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Heidari M, Cheshmi G, et al. The effect of paternal age on semen quality and fertilization outcome in men with normal sperm DNA compaction, reactive oxygen species, and total antioxidant capacity levels. *Turk J Urol*, 2019, 45, 164-70.

128. Agarwal A, Gupta S, Du Plessis S, Sharma R, Esteves SC, Cirenza C, et al. Abstinence time and its impact on basic and advanced semen parameters. *Urology*, 2016, 94, 102-10.

129. Agarwal A, Panner Selvam MK, Samanta L, Vij SC, Parekh N, Sabanegh E, et al. Effect of antioxidant supplementation on the sperm proteome of idiopathic infertile men. *Antioxidants (Basel)* 2019, 8, 488.

130. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing, practice recommendations based on clinical scenarios. *Transl Androl Urol* 2016, 5, 935-50.

131. Agarwal A, Esteves SC. Varicocele and male infertility, current concepts and future perspectives. *Asian J Androl*, 2016, 18, 161-2.

132. Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. *Fertil Steril*, 2010, 94, 1531-4.

133. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility, part 1. *Nat Rev Urol*, 2012,9,678-90.

134. Mehraban D, Ansari M, Keyhan H, Sedighi Gilani M, Naderi G, Esfehani F. Comparison of nitric oxide concentration in seminal fluid between infertile patients with and without varicocele and normal fertile men. *Urol J*, 2005,2,106-10.

135. Mostafa T, Anis T, El Nashar A, Imam H, Osman I. Seminal plasma reactive oxygen species-antioxidants relationship with varicocele grade. *Andrologia* 2012,44,66-9.

136. Mostafa T, Anis T, Imam H, El-Nashar AR, Osman IA. Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele. *Andrologia* 2009,41,1259.

137. Sharlip ID, Jarow J, Belker AM, Damewood M, Howards SS, Lipshultz LI, et al. Report on varicocele and infertility, an AUA best practice policy and ASRM Practice Committee report [Internet]. Linthicum (MD), American Urological Association, 2021

138. Wang J, Wang T, Ding W, Wu J, Wu G, Wang Y, et al. Efficacy of antioxidant therapy on sperm quality measurements after varicocelectomy, a systematic review and meta-analysis. *Andrologia*, 2019,51,133-196.

139. Moghissi KS, Wallach EE. Unexplained infertility. *Fertil Steril*, 1983,39,5-21.

140. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. *World J Mens Health*, 2014,32,117.

141. Ko EY, Sabanegh ES Jr, Agarwal A. Male infertility testing, reactive oxygen species and antioxidant capacity. *Fertil Steril* 2014,102,1518-27.

142. Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility, an updated review of literature. *Arab J Urol* 2017,16,35-43.

143. Imamovic Kumalic S, Pinter B. Review of clinical trials on effects of oral antioxidants on basic semen and other parameters in idiopathic oligoasthenoteratozoospermia. *Biomed Res Int*, 2014,426-951.

144. de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. *Free Radic Biol Med*, 1993,14,157-66.

145. O'Flaherty C. Redox regulation of mammalian sperm capacitation. *Asian J Androl*, 2015,17,583-90.

146. Baskaran S, Finelli R, Agarwal A, Henkel R. Reactive oxygen species in male reproduction, a boon or a bane? *Andrologia*, 2020.

147. Dias TR, Martin-Hidalgo D, Silva BM, Oliveira PF, Alves MG. Endogenous and exogenous antioxidants as a tool to ameliorate male infertility induced by reactive oxygen species. *Antioxid Redox Signal*, 2020.

148. Martin-Hidalgo D, Bragado MJ, Batista AR, Oliveira PF, Alves MG. Antioxidants and male fertility, from molecular studies to clinical evidence. *Antioxidants (Basel)*, 2019,8,89.

149. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function, a systematic review on evaluation and management. *Arab J Urol*, 2019,17,87-97.

150. Agarwal A, Arafa M, Chandrakumar R, Majzoub A, AlSaid S, Elbardisi H. A multicenter study to evaluate oxidative stress by oxidation-reduction potential, a reliable and reproducible method. *Andrology*, 2017,5,939-45.

151. Agarwal A, Henkel R, Sharma R, Tadros NN, Sabanegh E. Determination of seminal oxidation-reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. *Andrologia* 2018,50,e12914

152. Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. *Antioxid Redox Signal*, 2010,13,833-75.

153. Wang CC, Rogers MS. Oxidative stress and fetal hypoxia. In, Góth L, editor. *Reactive oxygen species and diseases*. Trivandrum, Research Signpost, 2007,257-82.

154. Dias TR, Alves MG, Casal S, Silva BM, Oliveira PF. The single and synergistic effects of the major tea components caffeine, epigallocatechin-3-gallate and L-theanine on rat sperm viability. *Food Funct*, 2016,7,1301-5.

155. Agarwal A, Majzoub A, Baskaran S, Panner Selvam MK, Cho CL, Henkel R, Finelli R, Leisegang K, Sengupta P, Barbarosie C, Parekh N, Alves MG, Ko E, Arafa M, Tadros N, Ramasamy R, Kavoussi P, Ambar R, Kuchakulla M, Robert KA, Iovine C, Durairajanayagam D, Jindal S, Shah R. Sperm DNA Fragmentation, A New Guideline for Clinicians. *World J Mens Health*, 2020 Oct,38,4,412-471.

156. Yovich JL, Keane KN. Assessing the male in fertility clinics-men undervalued, undermanaged and undertreated. *Transl Androl Urol*. 2017,4,624-628.

157. Daniele Santi, Giorgia Spaggiari, Manuela Simoni, Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management – meta-analyses, eproductive BioMedicine Online, 2018,37(3), 315-326.

158. Arafa M, Agarwal A, Majzoub A, Panner Selvam MK, Baskaran S, Henkel R, Elbardisi H. Efficacy of antioxidant supplementation on conventional and advanced sperm function tests in patients with idiopathic male infertility. *Antioxidants*. 2020,9,3,219.